煮熟的龙虾为什么会变红,数学突破奖
分类:奥门金沙网址

活龙虾和螃蟹的壳往往呈现青蓝的色调,而当它们被煮熟端上餐桌时却摇身一变,成了诱人的橘红色。如此巨大的颜色转变是怎么发生的呢?

科学是目前人类探知客观世界最好的方式。尽管投入科学不能一蹴而就地得到切实有用的成果,但长远来看却是技术发展最好的动力源。与技术开发不同,对科学的投入更像是公益活动,因为科学研究得到的成果属于全人类。而数学作为科学的“语言”,也有着类似的性质。

近日,斯坦福大学的戴宏杰研究组在《自然》发表论文,宣布研发出了充电极快、寿命超长的铝离子电池,引起了广泛关注。比起耳熟能详的“锂电池”,人们对铝离子电池的感觉要陌生得多。为什么要研发这样的新电池?这还得从充电电池的发展说起。

在以前,我们能够查到的解释是下面这个样子:

在目前富豪争相投身公益事业的社会潮流下,我们能听到的科学奖项也越来越多。除去老牌的菲尔兹奖、诺贝尔奖以外,我们时不时还能听到一些新的奖项。在前不久的6月23日,又有一个新的奖项横空出世,它名为“数学突破奖”,它的目标是“认可本领域内的重要进展,向最好的数学家授予荣誉,支持他们未来的科研事业,以及向一般公众传达数学激动人心之处”。

初中时,我有一部黄色的随身听。我给它准备了3对充电电池轮番上阵,这样,当周杰伦的声音突然变得缓慢时,我知道总有电池可以更换。后来,我有了MP3和手机,就渐渐不再听随身听了,需要经常充电的,也从圆柱形的5号电池换成了扁扁的锂电池。在我看来,世上无法逃避的事情,除了死亡和交税,还有给电池充电。

让龙虾壳呈现颜色的关键是一种名叫虾青素(Astaxanthin)的物质。这是一种类胡萝卜素,在一些藻类、鲑鱼、虾等生物体内都能发现它的身影。虽然常被叫作“虾青素”,但这种物质在游离状态下是橘红色的(嗯,所以有时候也可以叫它“虾红素”),真正呈现青色的是它与蛋白质组成的复合物——甲壳蓝蛋白(Crustacyanin),而后者就是它在活龙虾甲壳里面的存在状态。蛋白质通常是不太耐热的,所以在烹煮过程中,甲壳蓝蛋白发生变性,色素复合物的结构遭到破坏,于是其中的虾青素就变回了游离状态,龙虾壳也就跟着变红了。

这个奖项引人注目的原因之一是它的奖金来源:Facebook的创始人扎克伯格以及数码天空科技的创始人之一米尔诺。此前他们还设立了“基础物理突破奖”与“生命科学突破奖”,合作者更包括Google创始人之一布林以及阿里巴巴的创始人马云。他们都是互联网造就的新贵,大概也正因如此,他们更理解科学的重要性:正是科学的飞速发展,带来了日新月异的信息技术,才给他们带来了庞大的财富。

不是每一节电池都叫可充电电池

电池是生活中再常见不过的物品了。它进入人类世界已有200年的历史。早在1800年,意大利科学家亚历山德罗·伏特(Alessandro Volta)就发明了“伏打电堆”。伏打电堆由很多个单元堆叠而成,每个单元都有一块铜板和一块锌板,中间由一块浸有盐水的布隔开。时至今日,生活中常见的碱性电池、铅酸电池、锂电池等电池,都与古老的伏打电堆共享着同样的工作原理:通过氧化还原反应将自己储存的化学能转化为电能。

图片 1描绘伏特(左)向拿破仑(右)展示伏打电堆的画作。图片来源:66south.com

这一看似神奇的过程其实并不复杂。一块电池主要由正极、负极和电解液三部分组成。当电池与外电路联通时,负极一端就开始发生氧化反应,释放出电子;正极一端则发生还原反应,正好需要补充电子。由于电解液将两极隔开,只允许离子流动,不允许电子流动,于是电子通过外电路从负极流向正极,形成电流做功,化学能也藉此转化成了电能。

图片 2原电池示意图。阳极(Anode)与阴极(Cathode)与外电路连接,浸泡在电解液中,电池工作时,电流从阴极流向阳极。因此此处,阳极和负极是同一电极,阴极与正极是同一电极。图片来源:Arumugam Manthiram, Smart Battery MaterialsIn, CRC Press, 2009, pp. 8.

但如果用一次性电池为随身听供电,那么一张专辑刚刷几遍,电池就该扔了。一次性电池的电化学反应是不可逆的,也就是说,化学能转化为电能的旅程只能一条路走到黑,电量用尽,电池也没用了。能不能来一种可以重复使用的电池?

这种“得寸进尺”的需求,最终促成了世界上最早的可充电电池——铅酸电池的诞生。它由法国物理学家加斯顿·普兰特(Gaston Planté)于1859年发明。可充电电池采用的是可逆的电化学反应,只要施加外电压,改变电子流动的方向(从正极流向负极),电池两极就会发生与放电时方向相反的化学反应,仿佛“返老还童”,最终重新充满电力。

这项发明影响之深远令人不服不行——时至今日,人们在启动汽车引擎时使用的蓄电池依然是铅酸电池。铅酸电池的负极与正极分别采用海绵铅及二氧化铅,电解液使用稀硫酸。它可以提供很大的电流,价钱也不贵,但就是体积太大了些。

图片 3普兰特和他发明的铅酸电池。图片来源:bb-batteryasia.com

铅酸电池做不到面面俱到?没关系,后面还有一堆科学家跃跃欲试呢。此后,研究者们又不断探索,发明出采用其他化学反应的充电电池,如镍镉电池、镍氢电池和锂电池。它们能量密度更大,体积更小,可以用于为各类小型电子设备提供电能。

这个解释说得没有错,但它还不足以让喜欢刨根问底的人们满意。结合了蛋白质的虾青素与游离状态颜色相差如此之大,这到底是什么原因造成的?这个问题要比之前的问题难回答得多,在发现虾青素和甲壳蓝蛋白之后的很长一段时间里,科学家们都在为它们变化颜色的机制争论不休,难以得出确定的结论。

另一个引人注目之处则是高昂的奖金:300万美元,这是诺贝尔奖的2.5倍有余,与解决3个克雷研究所千年难题所能获得的金额相同。这是目前科学奖项最高的奖金,它很好地完成了吸引公众眼球的任务。

青出于蓝的锂离子电池

之前说到,电池工作时,电子通过外电路从负极流向正极。与此同时,相同电荷量的正离子则在电池内部从负极向正极流动。早期的电池都使用诸如稀硫酸这样的以水为溶剂的电解液。在这种情况下,电池内肩负维持电荷平衡任务的是氢离子。然而,使用水系电解液的电池,最多能达到的工作电压也不过2伏左右。如果我们想要获得更高的电压,输出更大功率,就要使用不含水的电解液,找到替代氢离子的正离子。

查看元素周期表,最佳的候选者落在了锂离子身上:作为3号元素,锂的原子量只有6.9;它既轻又小,比其他大的离子更容易在电解液中移动,可谓不二之选。确定了锂离子,接下来的任务,就是找到可以与之发生可逆反应的电极材料了。到20世纪70年代,美国化学家斯坦利·惠廷厄姆(M. Stanley Whittingham)在埃克森(Exxon)工作时率先发明了锂离子电池。经过多年优化,商业化的可充电锂离子电池在20世纪90年代初在日本推出。

图片 4斯坦利·惠廷厄姆目前仍是下一代锂电池设计的重要研发者。图片来源:binghamton.edu

锂离子电池的负极使用石墨,正极使用钴酸锂,电解液则使用含有锂盐(如六氟磷酸锂)的有机溶剂。放电时,嵌入在石墨负极中的锂被氧化进入电解液,跑到正极嵌入到氧化钴的晶格间隙中形成钴酸锂;充电时,锂则从钴酸锂中脱嵌,溜回石墨中,如此循环往复。这样的电池,工作电压可达到3.7伏以上,能量密度大大提高。

但所谓金无足赤,尽管锂离子电池大获成功,也免不了还有缺点——比如价格较高,容量流失,以及最严重的安全性不高的问题。锂离子电池电解液使用的有机溶剂十分易燃,虽然我们可以通过加入添加剂和改进电池设计来提高电池的稳定性,却终究不是长久之计。

本文由奥门金沙网址发布于奥门金沙网址,转载请注明出处:煮熟的龙虾为什么会变红,数学突破奖

上一篇:科学家的劳动力价格与猪肉周期率,数学家与诗 下一篇:没有了
猜你喜欢
热门排行
精彩图文