得那么精确,也可能不会
分类:奥门金沙网址

编者按:昨天一天,果壳科学人的编辑也被“天使粒子被发现”刷了屏,原本这也是最新科研成果进入大众视野的又一次绝好案例,然而通过研读发表在Science上的原论文,以及对论文作者和相关领域科学家们的采访,我们发现,一些媒体报道的“开启新时代”、“历史性的突破”、“迟早要得到诺贝尔奖”的研究,和科学家们眼中的“一项不错的工作”在事实细节上存在着很大的出入。果壳网科学人认为,科学报道的第一原则是事实准确,而后才是“搞个大新闻”。通过对论文作者以及凝聚态物理学家们的采访,看看专业人士是怎么评论这项研究的。

图片 1

图片 2

从昨天早上开始,关于“天使粒子被发现”的报道就刷爆了各个媒体网络。这些报道的研究,发表于今天的《科学》杂志(Science)上。

(本文由 Nautilus 授权转载,译/玛雅蓝)在生命出现之前,一定存在着结构。我们的宇宙在它的早期就合成了原子核,这些原子核捕获电子,形成了原子。原子聚集起来,形成了星系、恒星和行星。最后,生命有了家的港湾。我们想当然地认为是物理学定律让这些结构得以形成,但事情并不见得是必然如此。

(本文由 Nautilus 授权转载,译/姜Zn)实验科学家有时候是个吃力不讨好的工作。你可能在新闻头条中读过很多关于得出重大发现的实验报道,但是对于那些还没能观测到期望结果的实验者们,他们作出的努力(常常甚至是壮举)你可能知之甚少。

这篇论文有个非常学术而高冷的标题——《量子反常霍尔效应绝缘体-超导体结构中的手性马约拉纳费米子模》(Chiral Majorana fermion modes in a quantum anomalous Hall insulator– superconductor structure)。

在过去几十年中,许多科学家辩称,只要物理规律有哪怕一点点的不同,宇宙就不会形成任何复杂结构。然而与此同时,宇宙学家开始意识到,我们的宇宙也许不过是多重宇宙的一个组成部分,而多重宇宙是许许多多宇宙的组合,构成了一个更大的时空。其他宇宙的存在为物理规律的微调提供了一个诱人的解释。不同宇宙有不同的物理规律,而我们之所以生活在一个允许观察者存在的宇宙,是因为我们无法生活在别处。

这些在实验上付出的努力,有些跨越了几十年的时间,凝聚了几代人的劳动和专业知识。毫无成果的研究常常和世人皆知的大发现一样有科学价值:我们能了解到更多知识——自然世界不是什么样的,或者没有什么东西。但是倘若得到了一个正面的结果,则会对我们产生远为深刻的影响:它会改变我们对宇宙的认识,或我们在宇宙中的角色。

图片来源:Science

图片 3参数的设定:即使电磁力或万有引力比现实更强或者更弱,宇宙中也会有生命存在。图中阴影区域展示了可允许生命存在的参数值范围,星号代表我们的宇宙中的参数值,而坐标轴参照这些值进行标度。限制条件包括:恒星必须能够发生核聚变(在黑色曲线之下);恒星寿命需要足够长到可以演化出复杂的生命(红色曲线以下);温度足够高,以支持生物圈的存在(蓝色曲线左侧);不能膨胀太大长出所属的星系(蓝绿色曲线右侧)。图片来源:Fred C. Adams

以下是7项还在进行中的实验,它们目前都还没有找到想找的答案。但这些实验全都因设计精巧和充满野心而出众,不难想象为什么这些实验能够坚持不懈地持续推进了。

这篇文章中所描述的实验由加州大学洛杉矶分校的王康隆团队(UCLA Device Research Lab (Kang Wang Group))主导,上海科技大学合作,并由加州大学欧文分校、加州大学戴维斯分校协助、斯坦福大学团队的参与。实验中观测到了马约拉纳费米子模存在的证据,同时又极大程度上排除了其他因素的影响,成为马约拉纳准费米子存在的有力证据。

天文物理学家一直在讨论微调(fine-tuning),导致许多人理所当然地认为我们的宇宙超乎寻常地适合复杂结构出现。即使怀疑多重宇宙的人也接受微调,他们只是认为一定存在其他的解释。但实际上,微调从未被严格证明。我们实际上并不知道哪些物理定律是天体物理结构的发展所必需的,哪些又是生命的产生所必需的。近来关于恒星演化、核天体物理学和结构形成的研究显示,微调理论并没有先前预想的那么有说服力。有许许多多可能的宇宙都能支持生命,我们的宇宙并不像看上去那么特别。

为了“照亮”暗物质,把一箱液态氙埋到地下

科学家们推论,所有我们能观测到的星系都被宇宙中的某种结构支撑着,而构成这种结构的则是暗物质的“细丝”。环绕着各个星系的暗物质圈提供了额外的引力,使得恒星得以绕着星系的核心旋转。但是我们从未直接探测到过暗物质。过去的几十年里科学家们做出了许多尝试,试图通过暗物质与普通物质间极弱的作用来探测暗物质,但是全都一无所获。

在暗物质的诸多可能的存在形式中,所谓的弱作用重粒子(WIMP)对于粒子物理学家是比较可信的形式之一。LUX(“大型地下氙实验”)的实验场所的前身是一处矿井,位于美国南达科他州的地下1510米处;它给暗物质探测实验设立了相当高的标准。LUX由大约三分之一吨的液态氙和探测器组成。它被密封在一个装有72000吨高纯度水的容器中,水的作用是过滤掉有干扰性的宇宙射线。环绕在液态氙周围的探测器极其灵敏,能够捕捉到暗物质与哪怕一个氙原子碰撞所放出的微弱光线。

由于LUX没能探测到暗物质,科学家们计划对它进行升级——升级后的LUX-Zeplin实验会使用约20倍于LUX的液氙量。至于LUX-Zeplin能否有LUX没能取得的发现,目前仍未可知。大自然似乎有着嘲弄科学家的梦想和希望的嗜好。

文章的第一作者,加州大学洛杉矶分校(UCLA)的何庆林是这样解释这次研究的:“本次研究是利用了反常量子霍尔绝缘体(quantum anomalous Hall insulator)与超导体(superconductor)的耦合机制而形成一种新的拓扑量子态,称为拓扑超导体(topological superconductor)。UCLA团队利用分子束外延技术,制备了只有6纳米厚的反常量子霍尔绝缘体薄膜,然后在表层沉积超导体后将样品冷却至接近绝对零度,通过外加电场和磁场的调控,测试样品的量子电导,来证明了具有马约拉纳费米子激发的输运态,并且世界上首次实现其粒子的量子化,因此此工作是世界上首次实验证明这种粒子存在的最有力的证据。

微调的第一种类型,涉及运行中恒星上的自然基本相互作用力的大小。如果电磁力过强,质子之间的静电排斥会关闭恒星内部的核聚变,让恒星无法发光。如果电磁力太弱,核反应就会失控,导致恒星剧烈爆炸。如果引力太强,恒星要么坍缩成黑洞,要么永远不会发光。

为了(真正)看清宇宙大爆炸残留的引力波,钻研各种频率

引力波是电磁辐射的引力版。宇宙大爆炸时期形成的引力波(原初引力波)理应会在宇宙微波背景中留下独特的痕迹;宇宙微波背景则是宇宙大爆炸所残留的辐射,而大爆炸形成了我们身处的可观测的宇宙。这种引力波的痕迹在温度和偏振上会有细微的波动,它可以为我们提供宇宙在中性氢刚刚形成的特定时期的简要情报——那时宇宙只有379000岁。这种痕迹应该会有一种旋转的偏振模式,学名叫“B模偏振”。

宇宙泛星系偏振背景成像(BICEP)和凯克天文望远镜阵列(Keck Array)的合作实验在2014年宣布一个激动人心的消息:他们探测到了这种B模偏振。然而,他们探测到的B模偏振的源头实际上只是很普通的东西,原本以为是原初引力波,其实则是极化了的尘埃颗粒。在银道坐标系的高纬度地区,如果量足够大,这些尘埃可以产生类似于引力波的B模偏振的旋转模式。

BICEP和凯克的合作团队并没有气馁。他们升级了配置:BICEP3由大约2500个探测器(又叫做“辐射热测量计”)组成,比起它的前身,BICEP3可以探测低得多的宇宙微波背景的频率。历代不同版本的BICEP已经观测了十年,科学家们还是没能探测到由原初引力波发出的B模辐射。但是对B模辐射的探索并不会在短期内停止——实际上,试图首先探测到它的竞争才刚刚开始升温。

“今年早些时候,上海交通大学的贾金锋团队也发表了关于‘发现马约拉纳费米子’(The discovery of Majorana fermion)的工作。贾教授团队的工作是马约拉纳费米子的零维版,主要通过扫描显微镜测试;我们研究的是马约拉纳费米子的一维版,主要是做成电子器件来进行宏观电磁测试。

但是,如果更仔细地进行测试,就会发现恒星极其顽强。电磁力的强度得增强到一百倍或缩减到百分之一,才会让恒星的运转受影响。至于引力作用,强的一头要达到正常水平的100000倍,弱的一头更是要减弱到正常水平的十亿分之一。引力和电磁力所允许的强度范围取决于核反应速率,这进而又取决于核力。如果核反应速率更快一些,恒星甚至能在一个更大的引力和电磁力变化范围中运转。核反应速度减慢则会让这个范围缩小。

为了了解强核力与弱电相互作用力是否有联系,寻找光的“音爆”

从量子力学的开端,到认为弱核力(某些类型的放射性衰变与它有关)和电磁力实际上是同一种‘电-弱’力的不同形式,经过几十年的理论与实验的相辅相成,最终人们得到了所谓的粒子物理学标准模型。只有在我们熟知的标准实验室的环境下,电磁力与弱核力才表现出不一样的特性。这是由于希格斯场将质量赋予与它进行作用的粒子,从而隐藏了这两种力之间潜在的对称性。

在标准模型中,我们认为还有一种力可以和弱电相互作用力联系起来:强核力。在一种名为“大统一”的过程中,能量级达到CERN(欧洲核子研究中心)能量极限的万亿倍时,强核力和弱电相互作用力有着相近的特性。大统一理论的预测之一是,本应是稳定粒子的质子可能会衰变成其它粒子——例如π介子和正电子——尽管这种现象极其罕见。在一些模型里,质子的半衰期可能会达到宇宙年龄的一百亿亿亿(10^26)倍。

超级神冈中微子探测实验——以及它正在筹划中的升级版,究极神冈中微子探测实验——位于日本中部的神冈实验室的一座山下1000米处。它们的任务之一是在装满了极高纯度的水的巨大水箱中探寻那种罕见的质子衰变的蛛丝马迹。通过寻找被称为切连科夫辐射的微弱光线(相当于光的“音爆”),超级神冈中微子探测实验的目标是寻找质子衰变成的那些能量极高的粒子。

图片 4美国爱达荷国家实验室的先进试验堆,切连科夫辐射发出微光。图片来源:美国阿贡国家实验室

目前为止,一无所获。不过,究极神冈中微子探测实验预计可以在2020年投入使用。它计划达到的探测灵敏度将比它的上一任提升十倍。

“理论上,马约拉纳费米子应当出现量子化现象,但包括目前世界上还没有报道这一现象,而我们组是第一个做出来的量子化现象。”

除了这些最基本的运转要求之外,恒星还必需满足一系列其他限制条件,这进一步缩小了各种力的允许强度范围。星星必须很热:它的表面温度要很高才能驱动生命所必需的化学反应。在我们的宇宙中,大多数恒星周围都有一大片区域,其中的行星温度在300开尔文左右,足以支持生命的存在。在电磁力更强的宇宙中,恒星温度更低,也就不那么宜居。

为了证实超对称,检测中子

粒子物理学的标准模型认为,中子(它和质子一起组成了原子核)的电偶极矩(EDM)极其微小(EDM是相反的两种电极之间固定的间距)。中子的EDM之小可能正是它没有被探测出来的原因。但是超对称理论——该理论认为力和物质是统一的——拓展了标准模型,它预测的EDM可能能达到标准模型预测的10万倍之大。

通过寻找中子EDM的范围,科学家可以测试超对称是否在自然中存在;通过这种方式得到的结果比通过粒子加速器实验得到的更准确。位于法国格勒诺布尔市的劳厄

  • 朗之万研究所(Institute Laue-Langevin)的CryoEDM实验就是其中之一。通过观察超慢中子在磁场和电场中的“进动”(自转轴方向的变化),我们可以对中子的EDM进行精准的测量,因为如果中子EDM存在,它的进动率在这两种场内将会有所不同。

当CryoEDM达到它设计中的最高灵敏度时,如果还检测不到EDM,那就基本可以否决超对称性的存在。另一方面,如果它能检测到EDM,那将是证明超对称在自然中存在的有力线索,因为标准模型预测中的EDM微小到无法被现有的实验设备检测出来。

自左至右依次为:何庆林,王康隆,潘磊。供图:何庆林

恒星的寿命还必需足够长。复杂的生命形式需要经过极其漫长的时间才能演化出来。由于生命是靠一套复杂的化学反应所驱动的,生命演化的基本时间表取决于原子的时间尺度。在其他的宇宙中,原子钟摆动的速度各不相同,取决于电磁力的强度,而这种变化也要纳入考虑。电磁力更弱的时候,恒星就会更快地燃烧它的核燃料,寿命也因此缩短。

为了看到更高的维度,给引力来个特写

如果更高的维度存在,它们将可以影响引力在极短距离内的表现。这不但意味着它们会偏离牛顿引力的平方反比定律,而且标志着一种新的短距离引力的存在,这将会违背所谓的等效原理。等效原理指出,在同一个引力场内,所有的物质——不管是炮弹还是苹果——都会以完全相同的方式下落。高维度会多些麻烦的原因是,控制高维度规模的场本身会模仿引力的效果,但这种情况只发生在极短的距离之内,而且对于不同类型的物质,它的影响也不同。

图片 5科学家认为时空间的更高纬度可能会以六维卡拉比-丘流形的形式存在,镜像对称的假说就源自于这个想法。图片来源:Lunch

虽然爱因斯坦的广义相对论已经通过了从太阳系尺度到宇宙尺度的全面考验,科学家们近期才开始在亚毫米尺度上对它进行系统的测试。

华盛顿大学的埃特-沃实(Eöt-Wash)小组(以埃特沃斯男爵Baron Eötvos命名,他在20世纪初开创了这样的实验)正利用精确校准的扭秤搜寻违背等效原理(以及偏离平方反比定律)的现象。他们的观测尺度已经接近几十万分之一米。目前为止,他们还没发现不符合牛顿定律或是等效原理的现象;这意味着更高的维度(如果存在的话)蜷曲在远小于几十分之一微米的区域内。

 

最后,恒星至少必须要能够形成。为了让星系和随后出现的恒星从原始气体中形成,气体必须能够损失能量,冷却下来。冷却速率(再一次)取决于电磁力的强度。如果电磁力太弱,气体冷却的速度太慢,就会停留在弥散的状态,而无法凝结成星系。恒星还需要比宿主星系小,否则恒星就难以形成。这些影响对电磁力的下限增加了新的限制。

为了一窥宇宙学“黑暗时代”,收听微弱的电波信号

我们对于宇宙历史中的一个时期知之甚少,即所谓的“黑暗时代”。这是“复合”之后的一段时期,彼时中性氢刚刚形成,恒星还没有开始发光。一个单独的氢原子并不会释放多少辐射;然而,就像行星会在公转的同时自转一样,围绕氢原子核的运行的唯一一个电子也会围着一条轴“自转”。电子自转与公转运动的方向或是相同,或是相反;后者的能量会更低。

黑暗时代中,一部分中性氢被宇宙微波背景激发了:它们的电子会以能量更高的自转与公转同向的形式运动。当这些被激发的氢原子转变到低能量的 “非同向”的运动模式时,它们会放出一种频率约为14亿赫兹的辐射,这种辐射相当于一种十分微弱的,波长约21厘米的无线电波,检测到这种被称为“21厘米背景”的辐射能让我们直接观测到黑暗时代。

分布于欧洲(主要在荷兰)的低频射电阵望远镜(LOFAR)由一组大约20000个相控阵天线组成。它们从2012年开始向宇宙中窥探,试图探测到这种非常弱的信号。然而地球,以及它所身处的星系,是很嘈杂的;目前为止,探测到盖过我们身边的噪声的,来自黑暗时期的信号是件不可能的事。一项雄心勃勃的项目正在推进中:一个名为平方千米阵(SKA)的国际望远镜矩阵也许可以将实验推进一步,不过现在,黑暗时代依然是黑暗的。

马约拉纳费米子是什么?

又是马约拉纳费米子,又是马约拉纳费米子模,又是马约拉纳准费米子。物理学家们到底到底在说些什么?

这篇文章的共同一作,加州大学洛杉矶分校(UCLA)的潘磊表示:

“马约拉纳费米子本来是一个高能物理概念,是一种有质量的基本粒子,很多人认为中微子就是马约拉纳费米子。这里要说明,现在所有的发现都不是真正发现了马约拉纳费米子,而是发现了符合马约拉纳费米子性质的激发态。”

 

电子科技大学副教授李小飞向果壳网科学人介绍:

“粒子物理学标准模型认为,基本粒子有费米子和玻色子两大类,费米子构成物质并通过交换玻色子发生相互作用。依据超对称性原理,所有的费米子都存在反粒子,比如正电子就是电子的反粒子。

“随着量子力学的发展,意大利物理学家埃托里·马约拉纳(Ettore Majorana)于1937年提出,可能存在反粒子就是其本身的费米子,称为‘马约拉纳费米子’(Majorana fermion)。然而,实验上至今没有找到马约拉纳费米子。

埃托雷·马约拉纳。图片来源:维基百科

“实际上,大量粒子的集体运动模式具有粒子性,称为‘准粒子’或者‘集体激发’,比如晶格的热振动模式就被叫作‘声子’。凝聚态物理学家认为,调控固体材料中大量电子的集体运动模型,可以获得‘准’马约拉纳费米子。在2010年至2015年间,张首晟团队连续发表了多篇论文,阐述了利用磁场调控由量子反常霍尔效应薄膜和超导薄膜构成的混合器件中的电子集体运动模式,通过是否存在半整数量子化电导平台来判定这种准粒子的存在。

“这次实验成功测量到了这个半整数量子化电导平台,充分证实了这种马约拉纳准费米子的存在。这次实验在量子信息学等应用领域具有重要的现实意义,为马约拉纳费米子的存在提供了有力证据,极大地增强了人们寻找信心。”

 

麻省理工大学物理学教授、凝聚态物理学家文小刚说:

“之前,人们就已经在有自旋轨道耦合的超导体中发现了以准粒子激发的形式存在的马约拉纳费米子,但当时它被叫做另外一个名字:玻戈留玻夫(Bogoliubov)准粒子。超导体中的准马约拉纳费米子,或玻戈留玻夫准粒子的确和暗物质的一个候选粒子有点像,即自己是自己的反粒子。作为基本粒子的或超导体中的马拉约纳费米子是能在三维跑的。这次的工作发现的是在一维跑马拉约纳费米子。是很不一样的东西。”

 

中科院物理研究所研究员戴希说:

“当代凝聚态物理中的涉及到的这些所谓‘新粒子’,无论是外尔费米子还是马约拉纳费米子,都是在‘准粒子’或‘元激发’意义上讲的。与粒子物理中研究的‘真实粒子’相比,其科学意义体现在不同的方面。粒子物理中发现的新粒子让我们对宇宙的历史和未来形成更深刻的理解,而凝聚态里面的这些新‘准粒子’,则给我们操控和利用它们提供了巨大的可能性,在不久的未来有可能造福人类。”

 

复旦大学物理系教授施郁表示:

“归根到底,这还是固体材料中的电子的行为。但是,大量电子在固体的环境(原子核阵列以及外部条件比如磁场所形成的复杂势能)以及它们自己之间的相互作用下,可以简洁地用所谓“准粒子”来描述,也就是说这里的大量电子的表现就像在最低能量的状态基础上,激发出大量“准粒子”。为了强调这些“准粒子”是在新的层次上演生出来,而它们在其所在的环境中就类似我们的宇宙中的基本粒子,我们还可以称它们为‘演生粒子’。

“现在,实验团队在某个特定固体环境中,找到了类似马约拉拉纳费米子的演生粒子。所谓‘找到’,是说导电行为必须要用马约拉纳费米子来解释。

“这次他们发现的马约拉纳费米子是在二维磁性拓扑绝缘体与超导体的一维边界,这导致它是手征性的,也就是说沿着一个方向跑。”

 

重庆大学物理学院教授胡自翔表示:

“马约拉纳费米子是马约拉纳本人在1937年解狄拉克方程猜出来的,反粒子是其自身的特点是它最奇特之处。物理学家80年来一直在寻找这种神奇的粒子,粒子物理中的中微子有可能是马约拉纳费米子,但其验证十分困难。

“凝聚态物理学家发现在一些特定的凝聚态系统中的集体激发会出现具有马约拉纳性质的零模。例如填充因子5/2的分数量子霍尔效应中的准粒子激发,拓扑超导体内涡旋激发等。

“近年来在反常量子霍尔效应等对实验条件要求相对较低的系统出现后,人们发现一些界面系统,如超导与拓扑绝缘体异质结等能发现这种零模。去年上海交大的贾金锋研究组的实验和这次的实验采用的正是这种系统。”

 

潘磊同时还表示:

“我们此次发现的一大基础是利用了反常量子霍尔效应,这是中国科学院物理研究所研究员、清华大学教授薛其坤于2013年发表在《科学》杂志(Science)上的重大发现。”

综上,基本相互作用力的强度可以发生多个数量级的变化,而行星和恒星仍然能够满足图中所有的限制条件(如下图所示)。这些力的微调程度,远没有许多科学家所认为的那样“微”。

为了发现外星人,只需永远侧耳倾听

如果能发现宇宙中存在着其他智慧生命的确凿证据,这将会是人类文明的一个分水岭。自从无线电技术出现以来,人类就在通过各类实验试图搜寻地外文明的痕迹。我们最基本的假设是,(外星)人为的电波信号的频率范围会很窄,也会有重复性,所以就像人类发送的无线电一样,可以和宇宙中自然产生的电波区别开来。1977年我们探测到了一次非常诱人的候选信号,但是此后它再也没有出现过,我们也没法排除它是自然形成的可能性。

图片 6位于波多黎各的阿雷西博天文台参与了对地外文明的搜寻。图片来源:美国国家海洋和大气管理局(NOAA)

搜寻地外文明计划(SETI)仍在继续。SETI专用的多种射电望远镜中有一种叫做艾伦望远镜阵(ATA),它最近又新添了名义上用于寻找系外行星的技术。科学家们还提出要用SETI来寻找外星人的巨型结构;这是基于物理学家弗里曼·戴森(Freeman Dyson)的设想:高级文明可能会用巨型的设施(戴森球)来直接从母恒星中获取能量。虽然几十年来人类寻找地外文明的共同努力全都一无所获,但是我们现在有着史上最好的装备来解决亚瑟·克拉克(Arthur C. Clarke)的著名的忧虑:“有两种可能:我们在宇宙中是孤单的,或者我们不是。两者同样令人恐惧。”(编辑:小Alice呀)

图片 7

本文由 Nautilus 授权果壳网(guokr.com)编译发表,严禁转载。 

本文由奥门金沙网址发布于奥门金沙网址,转载请注明出处:得那么精确,也可能不会

上一篇:没有了 下一篇:没有了
猜你喜欢
热门排行
精彩图文